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Abstract

In many engineering design problems it is possibe to collect data

of the environmental disturbances which are acting upon our systems.

This data can be analyzed by determining its autocorrelation and

probability density function. When seeking solutions through simulation

it is desirable to be able to generate random time series having a

predetermined autocorrelation and probability density. This paper

describes a method to control both simultaneously.

The proposed system is composed of a linear filter, H(s), with

white Gaussian noise as input, followed by a nonlinear element f(x),

where x(t) is the output of H(s). The output of the system y(t) is

required to have a predetermined probability density py(y) and a

predetermined normalized autocorrelation function py( T ). The non-

linearity f(x) is designed to give the required density pye,- and

is relatively easy to design using the relationship

f(x) F -1[Fx(x)J

-l
where Fy is the inverse of F y(y) which is the cumulative distribution

function of y, and

2S..d

Fx(x) e e- 2 d42-w

is the cumulative Gaussian distribution.

-•I



The nonlinearity f(x) may be designed manually or in a digital computer

L by using a double table look up or in a hybrid computer system. It can

then be stored in a variable diode function generator of an analog

computer.

This nonlinear element, however, changes the autocorrelation of

the input, x(t). The amount of change can be determined by

• N n2

y nin n x

where 2
fx

Kn aff(x)U (x) e d2 axd
O"D V-2 -i and

H (x) is the Hermite polynomial of order n.
I n

This calculation can be done most conveniently in a hybrid

computer system.

The normalized autocorrelation of the intermediate stage, x(t),

px (T) must now be approximated by a sum of exponentials:

ae-s1ITI -S2 ;TJAx (T) =ale + a 2e + ..

by using a hybrid computer system. One approach which may be used to

determine the a4's and si's is discussed by HcDonough ant Huggins.

I The filter H(s) may be obtained from the at's and si's by spectral

factorization.
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By forcing the system with whit:e Ga- ssian naise the system

output, y(t) will have the desired .autocorrelation function and

probability density.

I
I
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1. Introd,,ation

Most of our physical systems are subjected to environmental

disturbances. if we are supposed to improve our system through

simulation then we must have means to generate disturbances as they

appear in nature.

In most cases it is possible to record these random disturbances

for further analysis. One way to analyze them is to determine their

autocorrelation function and their probability density. Our task now is

to design a system, which will generate a random time series

having a predetermined autocorrelation and probability density. In other

words we must be able to control both simultaneously.

Consider a system described in Figure 1. This system should be

so designed that a white Gaussian noise as an input will give y(t)

as an output having the desired normalized autocorrelation, p (T) and

the probability density, p (y). Working backwards from y(t), the instan-

taneous nonlinearity, f(x) must be such as to guarantee the desired proba-

bility density, py(y)with an input, x(t)o The function x(t) is always

Gaussian, but it must have a normalized autocorrelation, px () such as to

give the required autocorrelation, p (T) after going through the nonlinear
y

element f(x). The linear filter, H(s) must be so designed as to give

Gaussian output, x(t) with zero mean and the required autocorrelation px ().

.1I For simplicity, the variance of x(t) will be normalized to unity. The non-

linear element, f(x) can be designed first because p (y) and p(x) are known.
x x

Then p (T) can be determined because p (-r) and f(x) are known. p (T)

can now be approximated by a sum of exponentials. And finally, the
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linear filter may be obtained from the ai's and si 's by spectral

factorization. We will now have a system which will continuously

generate random time series having the required properties.

2. Mathematical Derivations.

The nonlinear element can be designed by using the relationship[3,5,6,7]

f(x) F Fy1[Fx (x)]

where:
-1

Fy is the intverse of F (y)

Fy(y) is the integral of the desired distribution density, p y(y).

F,(x) is the integral of the Gaussian distribution density, p Wx) or

ix e &2 d
F (X) e 2_d

x -W

Both cumulative density functions must be normalized so that the final

values of the integrals are one.

The relationship of the normalized autocorrelations px(i) and py(t)

can be determined from the approximate equation

NK2

2 Nn
y y nI- x

where a2 is the variance of y(t) (obtainable from p (y)),
y y

2x

I - , f(x)H(x) e dx andr n

3



SII (x) is the Hermite polynomial of order n(8]. The number of terms N, is

determined by 'he desired normalized error, c, in the approximation which

is given by N K2

n=1l a n!
y

Since p y() and f(x) are known, p(Xr) can be derived. To design the filter,

11(s) the normalized autocorrelation function of the output, p X(T) must be

approximated to the desired level of accuracy. This can be done by finite

sums of exponentials [19] as described by R. N. McDonough and W. H. Huggins

M1]. In their approach, "... a givei; number n of exponentials is considered,

such that the integrated squared error is minimized over both the m eoeffi-

cients of the linear combination and the n exponents used." [from the

abstract of ref. 1.].

If a hybrid computer, however, is available, then the mechanization of

finding the exponents and coefficients can be simplified as discussed later

in this paper. Also it is believed by these authors, that for most engineering

cases only three exponentials are required.

The problem reduces now to finding the best estimate of p (T), Px () of

the form:

x(T) = aIe + a2 e T a3 es , T>O

These three exponents can be easily generated in an analog computter

and by using optimizing hybrid techniques the parameters ai' s and si's can

be so adjusted as to give the minimum integrated squared error. Then the

power spectrum would be:

2as 2as 2as
(s) 2 2+ 2 2+ 2 2

"GI -s s2 -s s3 -s

4
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The filter H(s) may now be derived by spectral factorization which for the

three exponents case is given as follows: [2, 4]

As4 - 2Bs 2 + C

s2 B + - AC
A

B - AC

A

p F AC whereA

A 2(a 1 I + a2 s 2 + a3s3)

2as 2 2 2 2 2

1 1 al22 + alSlS3 2 + a2 s 2sl2 + a2 s 2 s3 2 + a~3s~ 1 a3 s3 s 2 2

C 2 (a lsls2 r3 + a 2 s2s1 s 3 + a 3s3s12s2)

o (s)r[:2azl: + 2a2s2 + 2a3s3;(s + P1) (s + P2)(S + s.1) (s + s2) (s + s3)

or more conveniently, defining

-s/2as+ 2as2 3s3

H(s) - a (Pl-Sl) (P2-Sl) + a(Pp1-s2) (P 2-s 2 ) + (pl-S3 )(P 2 -s 3 )(s+s1) (s2-sI) (s3-sI) (s+s2) (Sl-S2) (s3-s2) (s+s ) (sl-s3) (s2-s3)

In the general case with M exponents, we have

M

(T E a, T'O

Then the power spectrum may be written in the form

5



M-111 (p4. sA)
M 2a s-

4(s) = E i i=l
1i 2 s 2. M

I iS

and therefore, the filter Is given by

N-i

it (p, + s)

H(s) i=1

f (si + )
i=l

It is easy to see, that to build the filter the same analog computer

circuit, which was used to find the ai's and si's, can be used just by

changing the setting of the three input potentiometers.

To clarify the method an example with an analytical solution is given

in Appendix No. 1.

3. Computerized Methods.

When seeking solutions for these types of problems through hybrid

computation the following steps have to be taken. First nf all, two

distinctively different stages can be defined, namely: the design

stage and the stage of utilization of the designed system to generate

random time series.

A. Design Stage.

1) The desired probability density function p y(y)is given

either in a numerical or in a graph fo_-. In the first

case quite often a digital computer subroutine is

available. In many cases it can be conveniently

generated in an analog computer. In the second case a

curve f1ollowur or magnetic ink could be used. In any

event, the given py(y) must be generated, digitalized,

stored and plotted. It must be repetitively available

for further study. 6



2) Gaussian probability-Amai"~ fti~tuii'v4 49 mna o 'naam

available as a digital computer subroutine. It must be

Z generated and stored as in No. 1.

3) The stored py(y) must be fed into analog computer for

integration to form F (y). This will then be sampled andS~y

stored in a digital computer.

4) Gaussian density function, Px(x) is integrated and stored

as in No. 3 to form•xW).

5) The given autoco.-relaticn function of the output, y(t) in

its normalized form p (T) must be generated, digitalized,
Y

stored and plotted. Notice step No. 1.

6) Because F (y) and F (x) now are available the non-linear ele-
y x

ment, f(x) can be designed and stored in a digital computer.

This can be done by using a double-look-up method in a digital

computer as illustrated in Figure 2. In the final runa either

a digital computer or a variable diode function generator in an

analog computer could be used to implement the required non-

linear element, f(x).

7) To generate K%'s, n - 0,1,...,N, we need f(x), p,(x) and the

Hermite polynomial, Hn (x). This can be done most conveniently

in an analog computer as of Figure 3. Notice that two previous

stages of fi(x) must be stored for the next set of K's, This

should be continued until the error c is satisfactorily small.

[Hermite polynomials - Ur 1 (x) = (x) - n-l(x);

1 x, 2x _ -•. H3  -3 _-x.] K0 Is left in thisc ircuit

for checking purposes, since K0 is equal to the mean of y, i.e.

KO f ypy(y)dy.

7
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x
Figure 2, A demonstration of a double look-up method

to design the non-linear element, f(x).
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Figure 3. An analog computer circuit to generate K 'S.
x2
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8) The normalized autocorrelation function of x(t), pX(T)

can now be generated, digitalized, stored and plotted.

An illustration of how this can be done in a case

where four values of K1 were "found to bý- isfz:tor•, s3e

Figure 4. px(T) can be generated in C by letting a

servo-multiplyer, A, maintain the output, B, at zero.

9) To approximate px(T) by a sum of exponentials the

following method is used as a first trial. Build

exponential generating circuits in an analog computer,

for example three of them. Take the absolute value of

error between the sum of the exponents and the stored value

of x(T) and integrate in an analog computer. By using

digital computer optimizing techniques readjust the

servoset potentiometers representing the ai's and si's as

to minimize the error. Print out the optimizing values

of ai's and si's.

10) Design the filter H(s) as per Chapter 2. Notice that the

analog computer circuit in Step 9 can be used by merely

changing the values of the input potentiometers (and of

course by removing the initial conditions).

B. Stage of Generation of Random Time Series

1) Apply white Gaussian noise to the system. Plot Ay () and

compare with the given py(T).

2) Plotoy (y) and compare with the given py(y).

3) Plot the Impulse response of the filter, H(s).

4) Plot Px(r).

10
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4. Experimental Computer Run.

For this experimentatton an example, which has been analytically

solved in Appendix 1., was chosen. This example, however, was originally

designed for a fast hybrid system with a large memory. To fit the system

available, the hvbrid computer system of *he Pepartmrent of ladustri3l and

Systers Engineering, University of Florida, Gainesville, Florida (10.]

the time constant had to be increased. The required autocorrelation and

probability density of the output, y(t) were

(T) = e where 0 --.5

p (y) - unifozm between - 1 and + 1.

The linear filter, H(s) changes now to

H~)-1.06 .119H(s) -,. .
s+.5 s+l.5

and Figure 5.a shows, how the non-linear element, f(x) was designtd, This

was stored in the variable diode function generator. A permanently stored

subroutine war used to generate random-numbers having a uniform distribution

[Fig. 5.b.J. Sequentially eight of these were averaged to give one value

for the required normally distrib.ted data [Fig. 5.c.]. As one can easily

see there is a long range fluctuation present in this data. This irregular

fluctuation could be called a DC-component and its effect is detrimental

for the correllogram when one is forced to use such a short record

of data, only 630 data points, which means that the base of cn autocor-

relation function can be only 315 data points. To remove at least part

of this DC-compoment a double, exponential smoothing was used. This means

that the data [Fig. 5.c.) was run through an exponential smoothing circuit

with a time constant of 1 sec., then the smoothed data was run again

12
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backwards through the same circuit to compensate for the shift. This

doubly smoothed data was then subtracted from the original Gaussian data

to form the final white noise, w(t) to be used as the input to the linear

filter, 11(s) (Fig. 5.d.). It is better, though not perfect. The output

of the filter, x(t) [Fig. 5.e.] was then adjusted in such a way as to have

a standard deviation of 25 volts and its autocorrelation function was

plotted [Fig. 5.f.]. x(t) was then fed into the non-linear element, f(x)

to give an output, y(t) [Fig. 5.g.]. The autocorrelation function, p()

was determined [Fig. 5.h.] and the histogram of y(t) plotted [Fig. 5.i.].

The hybrid computer system used in this experimentation and the method for

obtaining the autocorrollographs have been described earlier [10), [11].

Considering the limited number of data points, which could be used

in this hybrid system, the histogram is surprisingly good. The autocorre-

lation plots show that the removal of the DC-component was not as good as

was hoped for. However, this discrepancy would disappear in time if a

continuous Gaussian noise source were available and longer record could be

used to check the autocorrelation functions.

5. Conclitding Remarks.

A method has been developed to generate random time series having a

predetermined autocorrelation and probability density. Needless to say

that this research is still in its infancy. Also due to the lack of space

we are unable to show some interesting results concerning the shape of the

non-linearities and their effects to the autocorrelation function of x(t).

This research will definitely continue especially to find out what are the

limitations, if any, of this approach.

16
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Appendix No. 1.

ASimnplEamlp

An example, whe~re ar. analytical solution czan be~ found is given

to test the validity of this m~ethod. Supposce that the output, y(t) is

requirod to have a probability densit fuaetion of the form: [8J

C- the invers (0f the functio - *)1-

-where ien IO Evtec

er<X) 2J Ail

Le t tbe -desired iiutoczokielAtioh ucino frt b el o -thefo6

or in normalized form:

p (T) e
y

In this case the variance-of y(t) is

2L~ - R (0) -are- tin. 2

For a- I the, density of y(t) is -Aniform- in (-!AAY

2r

2V2  X
k arc sin ---

2 24



Elhi tc .Ioilne with R() -t isUscel ZIP tile 1inptut to tile filtt.r and

the non-1.1near eil'flwent f :)is jf t~e f otin

f 2A fi

where 2

ik,rf W) e j. i

Nivaerica1 examnipe follows.

Let us Essurne that:

a 1 and 5 M~en-

K- ar- -in ~.2

73.6; K3 ~.456, -Ab4 K2  37

B, 5.Okf B i575 and B~O2
1 ~23

H( -.66 p 08  .57 .6i25~HI. .66 -+1- s+25

3.-34 -. 378 +.0082

s+5 s+15 s+25

Only'two-terms required in this case.

- 25-



2A

wnh ich is a! m~r:: hma tely:

" ° • Ry'€ 3 .0_
,- -tRy T5 +

R() ( + (2 ) R

12 y 3!

lThese terms provide enough accuracy.

Then if we-let:

y 1
-K- - K=arc sin;• ~~2A2I+2,

S0<O K< -,!

we have:

C-RI-. i •2 -38121 K4  -501 -I

0 (s) (I+ L2) K -{-8-26 e

x (i + 6 K( (2I (982-s2)(2582-2 - 120 (2 --

x12 (-•2s) (9( 2
Ss

2 ) (2502_.S2)

V

-26

4

C26_2) K(2_2 2
(I + t2 6 (,2s2(51 (5



2 -I
4 2 4- 1)J , 0 ý - 2_ 9)KI1ý -4 t-

This will rosul.t in the -- ,ruited- filter as,

liý KO -K 13 2 + V-ý + K~ .2

12 10+s) (3ý +s) (5ý+s)

I where

t 5400 300 K2 + 9 K4 , ireal for 0oK<2

- 3 4-12 +K 44 real for 0 K <

I - - 2 (•8- _ ,., o
"r2::- - (-4_S-$ -Y, +- 5 "A +--3kI real-forO< <

or:-
-2 

32 +

whereý

- , + K i

(1+)1 12 23

- 1 8

K-3FK2 +9
Bi 4

ik 2 + 25K,3
- B

"3 8

I _ - - 38 - 27.-

it•o :e{
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noise as input, followed by a nonlinear element f(g), where x(t) is the output of
H(s). The output of the system y(t) is required to have a predetermined-probability
density p~ (y) and a predutermiaed normalized autocorrelatiot 'unction p (T). The
nonlinearity f(x) is designed to 8iv the required density p~ (y), and is relatively
-easy to design using -the: relations~hip,

f(X) F IF 4)
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Abstract (continued)

where PV-1 is the inverse of F (y) which is the ccunulative distribution function
Y y

of y, and

e 2

is the cumulative Gaussian distribution.

The nonlinearity f(x) may be designed rdenually or in a digital computer by using

a double table look up or in a hybrid computer system. It can then be stored in

a variable diode function generator of an analog computer.

This nonlinear element, however,-changes the autocorrelation of-the input,

x(t). The amount of change can be determined by

ptP . K 2-
n

where

e 2
x - J- f(x)H(x) ,•2 dx and

-H -(x) -is the Hermite polynomial of .rder n,..2 This calculation can be done most conveniently in a hybrid computer system.

Th e normalized autocorrelation of the intermediate stage, x(t), p (E) must

"nd- 7 be approximated by a :-,m-of exponentials:

Sx(t) ale + a2e +

!y-usiýng a hybrld computer system. One approach which may be used to determine

the at's and st's is discussed by McDonough and Huggins. The filter R(s) may be

b obtained from the a 's and si's by spectral factorizAtioni.

By forcing the system utth whire Gaussian noise the system outputp y(t) will

have the desired autocorrelation function and probability density.

L~ ____-___


